VIROMERS

Obtaining blastocysts:

Allocate four days before beginning viromer experiments to obtaining blastocysts. Superovulate 7-weekold female mice according to protocol (see: *Superovulation* protocol). Perform dissection, flushing, and embryo culture according to protocol (see: "Dissection and flushing" section of *Blastocyst Outgrowth* protocol). Collect blastocysts for viromer experiments at late blastocyst stage after 3 days of culture.

Important notes for obtaining blastocysts:

Place embryos into the incubator AS SOON AS POSSIBLE after collection.

Embryos should not remain in MEM-HEPES collection medium for more than 30 minutes. Embryos in MEM-HEPES should be kept on a heated 37°C microscope stage.

Do not keep embryos out of the incubator for more than 10 minutes.

Use a new micropipette each time you collect embryos after culturing.

Required materials for viromer experiments:

2 µl viromers stock solution

1 μl siRNA (200 μM)

KSOM medium, pre-equilibrated by incubating overnight at 37°C/5% CO2

- (8) 60x15 mm centre-well organ culture dishes (catalog number: 353037)
- (4) 0.6 ml microcentrifuge tubes

Viromers:

- Prepare 1:100 dilution of viromers stock solution. Dilute 2 µl viromers stock solution in 198 µl KSOM medium. Label this Solution A. (Note: Mix all solutions thoroughly but gently by pipetting up-anddown, avoiding air bubbles.)
- 2. Prepare 10 μ M working solution of siRNA. Dilute 1 μ I siRNA (200 μ M) in 19 μ I of KSOM medium. Label this Solution B.
- 3. Combine 180 μ I Solution A with 20 μ I Solution B. Final concentration of siRNA is 1 μ M.
- 4. Incubate the A:B mixture for 10 minutes at room temperature.

5. Add the A:B mixture to pre-equilibrated KSOM in the following proportions:

Volume of A:B mixture (µI)	Volume of KSOM (µl)	Total volume (µI)	Final siRNA concentration	Final viromers dilution
80	320	400	200 nM	1:500
40	360	400	100 nM	1:1000
20	380	400	50 nM	1:2000
0	400	400	0 nM	0

- 6. Transfer the entire volume (400 µl) of each dilution to separate culture dishes.
- 7. Add 20 late blastocysts to each culture dish.
- 8. Incubate blastocysts for 4 hours at 37° C in 5% CO₂ in air.
- 9. After 4 hours, remove the dishes from the incubator and wash blastocysts two times by changing KSOM medium in dish.
- 10. Transfer each of the four groups of blastocysts to new culture dishes containing fresh pre-equilibrated KSOM medium.
- 11. Incubate groups of blastocysts overnight at 37° C in 5% CO₂ in air.
- 12. The next day, collect each group of blastocysts in a 0.6 ml microcentrifuge tube.
- 13. Assess success of RNAi by using PCR (regular or quantitative PCR) to detect the target mRNA and a control mRNA (e.g. actin).